Asymptotic relationships between the solutions of two second order differential equations
Asymptotic representations of some classes of solutions of nonautonomous ordinary differential -th order equations which somewhat are close to linear equations are established.
The well-known bottleneck of systems pharmacology, i. e., systems biology applied to pharmacology, refers to the model parameters determination from experimentally measured datasets. This paper represents the development of our earlier studies devoted to inverse (ill-posed) problems of model parameters identification. The key feature of this research is the introduction of control (or periodic forcing by an input signal being a drug intake) of the nonlinear model of drug-induced enzyme production...
This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.
The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.