Mathematical description of program diagram
In this paper, by applying a simple mathematical model imitating the equation of state, behaviour of the phase transition curve near the critical point is investigated. The problem of finding the unique vapour-liquid equilibrium curve passing through the critical point is reduced to solving a nonlinear system of differential equations.
Flow cytometric analysis using intracellular dyes such as CFSE is a powerful experimental tool which can be used in conjunction with mathematical modeling to quantify the dynamic behavior of a population of lymphocytes. In this survey we begin by providing an overview of the mathematically relevant aspects of the data collection procedure. We then present an overview of the large body of mathematical models, along with their assumptions and uses,...
Elements of operational calculi for mean-periodic functions with respect to a given linear functional in the space of continuous functions are developed. Application for explicit determining of such solutions of linear ordinary differential equations with constant coefficients is given.
The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then...
We study the vibrations of lumped parameter systems, the spring being defined by the classical linear constitutive relationship between the spring force and the elongation while the dashpot is described by a general implicit relationship between the damping force and the velocity. We prove global existence of solutions for the governing equations, and discuss conditions that the implicit relation satisfies that are sufficient for the uniqueness of solutions. We also present some counterexamples...
The basic idea of this paper is to give the existence theorem and the method of averaging for the system of functional-differential inclusions of the form ⎧ (0) ⎨ ⎩ (1)
In this paper we are concerned with sufficient conditions for the existence of minimal and maximal solutions of differential equations of the form where is the iterated linear differential operator of order and is a continuous function.