-stability of dynamic equations on time scales with nonregressivity.
MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf GorenfloWe propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined through a constitutive equation....
Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Degradation of coral reefs is often associated with changes in community structure towards a macroalgae-dominated reef ecosystem due to the reduction in herbivory caused by overfishing. We investigate the coral-macroalgal phase shift due to the effects of harvesting of herbivorous reef fish by means of a continuous time model in the food chain. Conditions for local asymptotic stability...
This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being...
The main goal of the present work is a generalization of the ideas, constructions and results from the first and second-order situation, studied in [63], [64] to that of an arbitrary finite-order one. Moreover, the investigation extends the ideas of [65] from the one-dimensional base X corresponding to O.D.E.