-convergence for ordinary differential equations with Peano phaenomenon
In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.
We consider the Gaudin model associated to a point z ∈ ℂⁿ with pairwise distinct coordinates and to the subspace of singular vectors of a given weight in the tensor product of irreducible finite-dimensional sl₂-representations, [G]. The Bethe equations of this model provide the critical point system of a remarkable rational symmetric function. Any critical orbit determines a common eigenvector of the Gaudin hamiltonians called a Bethe vector. In [ReV], it was shown that for generic...
Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
The properties of iterative splitting with two bounded linear operators have been analyzed by Faragó et al. For more than two operators, iterative splitting can be defined in many different ways. A large class of the possible extensions to this case is presented in this paper and the order of accuracy of these methods are examined. A separate section is devoted to the discussion of two of these methods to illustrate how this class of possible methods can be classified with respect to the order of...
Definitions, properties, examples and applications of generalized analytic functions introduced by B. Ziemian are presented.
In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results.
Boundary value problems for generalized linear differential equations and the corresponding controllability problems are dealt with. The adjoint problems are introduced in such a way that the usual duality theorems are valid. As a special case the interface boundary value problems are included. In contrast to the earlier papers by the author the right-hand side of the generalized differential equations as well as the solutions of this equation can be in general regulated functions (not necessarily...