Pachpatte inequalities on time scales.
The paper deals with the higher-order ordinary differential equations and the analogous higher-order difference equations and compares the corresponding fundamental concepts. Important dissimilarities appear for the moving frame method.
We consider a multifunction , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.
In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out...
Further extension of the Levinson transformation theory is performed for partially dissipative periodic processes via the fixed point index. Thus, for example, the periodic problem for differential inclusions can be treated by means of the multivalued Poincaré translation operator. In a certain case, the well-known Ważewski principle can also be generalized in this way, because no transversality is required on the boundary.
In this paper we consider the random fuzzy differential equations and show their application by an example. Under suitable conditions the Peano type theorem on existence of solutions is proved. For our purposes, a notion of ε-solution is exploited.