Quadratic convergence of approximate solutions to two-point boundary value problems with impulse.
In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix...
In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.
A differential equation of the form (q(t)k(u)u')' = F(t,u)u' is considered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about the existence, uniqueness, boundedness and dependence of solutions on a parameter are given.
A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.
The method of quasilinearization for a periodic boundary value problem for nonlinear hybrid differential equations is studied. It is shown that the convergence is quadratic.