Displaying 41 – 60 of 164

Showing per page

Existence of solutions of impulsive boundary value problems for singular fractional differential systems

Yuji Liu (2017)

Mathematica Bohemica

A class of impulsive boundary value problems of fractional differential systems is studied. Banach spaces are constructed and nonlinear operators defined on these Banach spaces. Sufficient conditions are given for the existence of solutions of this class of impulsive boundary value problems for singular fractional differential systems in which odd homeomorphism operators (Definition 2.6) are involved. Main results are Theorem 4.1 and Corollary 4.2. The analysis relies on a well known fixed point...

Existence Principles for Singular Vector Nonlocal Boundary Value Problems with φ -Laplacian and their Applications

Staněk, Svatoslav (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Existence principles for solutions of singular differential systems ( φ ( u ' ) ) ' = f ( t , u , u ' ) satisfying nonlocal boundary conditions are stated. Here φ is a homeomorphism N onto N and the Carathéodory function f may have singularities in its space variables. Applications of the existence principles are given.

Existence results for a fourth order partial differential equation arising in condensed matter physics

Carlos Escudero, Filippo Gazzola, Robert Hakl, Ireneo Peral, Pedro José Torres (2015)

Mathematica Bohemica

We study a higher order parabolic partial differential equation that arises in the context of condensed matter physics. It is a fourth order semilinear equation which nonlinearity is the determinant of the Hessian matrix of the solution. We consider this model in a bounded domain of the real plane and study its stationary solutions both when the geometry of this domain is arbitrary and when it is the unit ball and the solution is radially symmetric. We also consider the initial-boundary value problem...

Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach

Haishen Lü, Donal O'Regan, Ravi P. Agarwal (2007)

Applications of Mathematics

This paper studies the existence of solutions to the singular boundary value problem - u ' ' = g ( t , u ) + h ( t , u ) , t ( 0 , 1 ) , u ( 0 ) = 0 = u ( 1 ) , where g ( 0 , 1 ) × ( 0 , ) and h ( 0 , 1 ) × [ 0 , ) [ 0 , ) are continuous. So our nonlinearity may be singular at t = 0 , 1 and u = 0 and, moreover, may change sign. The approach is based on an approximation method together with the theory of upper and lower solutions.

Extremal properties of distance-based graph invariants for k -trees

Minjie Zhang, Shuchao Li (2018)

Mathematica Bohemica

Sharp bounds on some distance-based graph invariants of n -vertex k -trees are established in a unified approach, which may be viewed as the weighted Wiener index or weighted Harary index. The main techniques used in this paper are graph transformations and mathematical induction. Our results demonstrate that among k -trees with n vertices the extremal graphs with the maximal and the second maximal reciprocal sum-degree distance are coincident with graphs having the maximal and the second maximal reciprocal...

Fractional BVPs with strong time singularities and the limit properties of their solutions

Svatoslav Staněk (2014)

Open Mathematics

In the first part, we investigate the singular BVP d d t c D α u + ( a / t ) c D α u = u , u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems d d t c D α n u + ( a / t ) c D α n u = f ( t , u , c D β n u ) , u(0) = A, u(1) = B, c D α n u ( t ) t = 0 = 0 where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying...

Heteroclinic orbits in plane dynamical systems

Luisa Malaguti, Cristina Marcelli (2002)

Archivum Mathematicum

We consider general second order boundary value problems on the whole line of the type u ' ' = h ( t , u , u ' ) , u ( - ) = 0 , u ( + ) = 1 , for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the ( u , u ' ) plane dynamical system.

Currently displaying 41 – 60 of 164