On a two-point boundary value problem for second order singular equations
The problem on the existence of a positive in the interval solution of the boundary value problem is considered, where the functions and satisfy the local Carathéodory conditions. The possibility for the functions and to have singularities in the first argument (for and ) and in the phase variable (for ) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.