Displaying 101 – 120 of 385

Showing per page

Existence of solutions for a class of first order boundary value problems

Amirouche Mouhous a, Svetlin Georgiev Georgiev b, Karima Mebarki c (2022)

Archivum Mathematicum

In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones.

Existence Principles for Singular Vector Nonlocal Boundary Value Problems with φ -Laplacian and their Applications

Staněk, Svatoslav (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Existence principles for solutions of singular differential systems ( φ ( u ' ) ) ' = f ( t , u , u ' ) satisfying nonlocal boundary conditions are stated. Here φ is a homeomorphism N onto N and the Carathéodory function f may have singularities in its space variables. Applications of the existence principles are given.

Explosive solutions of semilinear elliptic systems with gradient term.

Marius Ghergu, Vicentiu Radulescu (2003)

RACSAM

Estudiamos la existencia de soluciones del sistema elíptico no lineal Δu + |∇u| = p(|x|)f(v), Δv + |∇v| = q(|x|)g(u) en Ω que explotan en el borde. Aquí Ω es un dominio acotado de RN o el espacio total. Las nolinealidades f y g son funciones continuas positivas mientras que los potenciales p y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito. Demostramos que las soluciones explosivas en el borde dejan de existir si f y g son sublineales. Esto se tiene...

Functions uniformly quiet at zero and existence results for one-parameter boundary value problems

G. L. Karakostas, P. Ch. Tsamatos (2002)

Annales Polonici Mathematici

We introduce the notion of uniform quietness at zero for a real-valued function and we study one-parameter nonlocal boundary value problems for second order differential equations involving such functions. By using the Krasnosel'skiĭ fixed point theorem in a cone, we give values of the parameter for which the problems have at least two positive solutions.

Currently displaying 101 – 120 of 385