Displaying 1121 – 1140 of 1972

Showing per page

On Poisson-Dirichlet problems with polynomial data

Henryk Gzyl (2002)

Publicacions Matemàtiques

In this note we provide a probabilistic proof that Poisson and/or Dirichlet problems in an ellipsoid in Rd, that have polynomial data, also have polynomial solutions. Our proofs use basic stochastic calculus. The existing proofs are based on famous lemma by E. Fisher which we do not use, and present a simple martingale proof of it as well.

On positive solutions for a nonlinear boundary value problem with impulse

Huseyin Bereketoglu, Aydin Huseynov (2006)

Czechoslovak Mathematical Journal

In this paper we study nonlinear second order differential equations subject to separated linear boundary conditions and to linear impulse conditions. Sign properties of an associated Green’s function are investigated and existence results for positive solutions of the nonlinear boundary value problem with impulse are established. Upper and lower bounds for positive solutions are also given.

On similarity solution of a boundary layer problem for power-law fluids

Gabriella Bognár (2012)

Mathematica Bohemica

The boundary layer equations for the non-Newtonian power law fluid are examined under the classical conditions of uniform flow past a semi infinite flat plate. We investigate the behavior of the similarity solution and employing the Crocco-like transformation we establish the power series representation of the solution near the plate.

On solvability of nonlinear boundary value problems for the equation ( x ' + g ( t , x , x ' ) ) ' = f ( t , x , x ' ) with one-sided growth restrictions on f

Staněk, Svatoslav (2002)

Archivum Mathematicum

We consider boundary value problems for second order differential equations of the form ( x ' + g ( t , x , x ' ) ) ' = f ( t , x , x ' ) with the boundary conditions r ( x ( 0 ) , x ' ( 0 ) , x ( T ) ) + ϕ ( x ) = 0 , w ( x ( 0 ) , x ( T ) , x ' ( T ) ) + ψ ( x ) = 0 , where g , r , w are continuous functions, f satisfies the local Carathéodory conditions and ϕ , ψ are continuous and nondecreasing functionals. Existence results are proved by the method of lower and upper functions and applying the degree theory for α -condensing operators.

Currently displaying 1121 – 1140 of 1972