Page 1

Displaying 1 – 12 of 12

Showing per page

Qualitative investigation of nonlinear differential equations describing infiltration of water

Xingbao Wu (1995)

Annales Polonici Mathematici

A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.

Quantum-graph vertex couplings: some old and new approximations

Stepan Manko (2014)

Mathematica Bohemica

In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.

Quasilinear vector differential equations with maximal monotone terms and nonlinear boundary conditions

Ralf Bader, Nikolaos Papageorgiou (2000)

Annales Polonici Mathematici

We consider a quasilinear vector differential equation which involves the p-Laplacian and a maximal monotone map. The boundary conditions are nonlinear and are determined by a generally multivalued, maximal monotone map. We prove two existence theorems. The first assumes that the maximal monotone map involved is everywhere defined and in the second we drop this requirement at the expense of strengthening the growth hypothesis on the vector field. The proofs are based on the theory of operators of...

Currently displaying 1 – 12 of 12

Page 1