Schwach majorisierende Elemente und die besonderen Monotonie-Eigenschaften von Randwertaufgaben zweiter Ordnung.
The authors consider the boundary value problem with a two-parameter nonhomogeneous multi-point boundary condition
The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.
We derive monotonicity results for solutions of ordinary differential inequalities of second order in ordered normed spaces with respect to the boundary values. As a consequence, we get an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski's Fixed Point Theorem.
In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.
We show the existence result of viable solutions to the second-order differential inclusion ẍ(t) ∈ F(t,x(t),ẋ(t)), x(0) = x₀, ẋ(0) = y₀, x(t) ∈ K on [0,T], where K is a closed subset of a separable Banach space E and F(·,·,·) is a closed multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the third argument.
We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.
Motivated by [3], we define the “Ambrosetti–Hess problem” to be the problem of bifurcation from infinity and of the local behavior of continua of solutions of nonlinear elliptic eigenvalue problems. Although the works in this direction underline the asymptotic properties of the nonlinearity, here we point out that this local behavior is determined by the global shape of the nonlinearity.