-th order ordinary differential systems under Stieltjes boundary conditions
We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.
This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is...
A class of nonlinear boundary value problems for p-Laplacian differential equations is studied. Sufficient conditions for the existence of solutions are established. The nonlinearities are allowed to be superlinear. We do not apply the Green's functions of the relevant problem and the methods of obtaining a priori bounds for solutions are different from known ones. Examples that cannot be covered by known results are given to illustrate our theorems.
Sufficient conditions are established for ultimate boundedness of solutions of certain nonlinear vector differential equations of third-order. Our result improves on Tunc’s [C. Tunc, On the stability and boundedness of solutions of nonlinear vector differential equations of third order].
A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.