Second-order boundary value problem with integral boundary conditions.
We show the existence result of viable solutions to the second-order differential inclusion ẍ(t) ∈ F(t,x(t),ẋ(t)), x(0) = x₀, ẋ(0) = y₀, x(t) ∈ K on [0,T], where K is a closed subset of a separable Banach space E and F(·,·,·) is a closed multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the third argument.
We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.
Motivated by [3], we define the “Ambrosetti–Hess problem” to be the problem of bifurcation from infinity and of the local behavior of continua of solutions of nonlinear elliptic eigenvalue problems. Although the works in this direction underline the asymptotic properties of the nonlinearity, here we point out that this local behavior is determined by the global shape of the nonlinearity.
The aim of this paper is to investigate, as precisely as possible, a boundary value problem involving a third order ordinary differential equation. Its solutions are the similarity solutions of a problem arising in the study of the phenomenon of high frequency excitation of liquid metal systems in an antisymmetric magnetic field within the framework of boundary layer approximation.