On the existence of oscillatory solutions to th order differential equations with quasiderivatives
Miroslav Bartušek (1998)
Archivum Mathematicum
Vladimír Vlček (1986)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Staněk, Svatoslav (1981)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Staněk, Svatoslav (1984)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Staněk, Svatoslav (1985)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Staněk, Svatoslav (1984)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
James S.W. Wong, Anton Zettl (1973)
Mathematische Zeitschrift
B. Malcom Brown, W. Desmond Evans (1973)
Mathematische Zeitschrift
Ondřej Došlý (1987)
Mathematica Slovaca
Shengjian Wu (1994)
Mathematica Scandinavica
Steven B. Bank (1994)
Rendiconti del Seminario Matematico della Università di Padova
Philip Hartman (1983)
Annales Polonici Mathematici
Lu-San Chen (1976)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Manabu Naito (2007)
Archivum Mathematicum
The higher-order nonlinear ordinary differential equation is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions satisfying is studied. The results can be applied to a singular eigenvalue problem.
N. Parhi, P. Das (1998)
Archivum Mathematicum
In this paper we have considered completely the equation where , , and such that , and . It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A. C. Lazer earlier.
Taylor, W.E. jr. (1978)
Portugaliae mathematica
Ján Ohriska (1989)
Czechoslovak Mathematical Journal
S. H. Saker, J. Džurina (2010)
Mathematica Bohemica
In this paper we consider the third-order nonlinear delay differential equation (*) where , are positive functions, is a quotient of odd positive integers and the delay function satisfies . We establish some sufficient conditions which ensure that (*) is oscillatory or the solutions converge to zero. Our results in the nondelay case extend and improve some known results and in the delay case the results can be applied to new classes of equations which are not covered by the known criteria....
Agarwal, Ravi P., Grace, S.R. (2000)
Georgian Mathematical Journal
Marc Voorhoeve (1976)
Mathematische Zeitschrift