Disconjugacy criteria for linear vector differential equations
For linear differential equations of the second order in the Jacobi form O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.
The paper is concentrated on Professor Miloš Ráb and his contribution to the theory of oscillatory properties of solutions of second and third order linear differential equations, the theory of differential equations with complex coefficients and dynamical systems, and the theory of nonlinear second order differential equations. At the beginning, we take a brief look at the most important moments in his life. Afterwards, we describe his scientific activities on mentioned theories.
The work characterizes when is the equation eventually disconjugate for every value of and gives an explicit necessary and sufficient integral criterion for it. For suitable integers , the eventually disconjugate (and disfocal) equation has 2-dimensional subspaces of solutions such that , , , . We characterize the “smallest” of such solutions and conjecture the shape of the “largest” one. Examples demonstrate that the estimates are sharp.