On the asymptotic behaviour of the equation with a complex-valued function
Josef Kalas (1981)
Archivum Mathematicum
David Lowell Lovelady (1977)
Czechoslovak Mathematical Journal
Fausto Segala (1999)
Bollettino dell'Unione Matematica Italiana
Si prova una nuova formula di rappresentazione per la famosa funzione di Airy. Ne viene data applicazione per la determinazione di certi bounds significativi per la funzione stessa.
Vasilios Staikos (1972)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Gorman, Arthur D. (1984)
International Journal of Mathematics and Mathematical Sciences
Lakrib, Mustapha (2002)
Electronic Journal of Differential Equations (EJDE) [electronic only]
N. Parhi, S. Parhi (1986)
Annales Polonici Mathematici
C. Lubich (1990/1991)
Numerische Mathematik
Takashi Aoki, Takahiro Kawai, Tatsuya Koike, Yoshitsugu Takei (2004)
Annales de l’institut Fourier
We first introduce the notion of microdifferential operators of WKB type and then develop their exact WKB analysis using microlocal analysis; a recursive way of constructing a WKB solution for such an operator is given through the symbol calculus of microdifferential operators, and their local structure near their turning points is discussed by a Weierstrass-type division theorem for such operators. A detailed study of the Berk-Book equation is given in Appendix.
Izobov, N., Krasovskij, S. (1998)
Memoirs on Differential Equations and Mathematical Physics
Daniel Panazzolo (2000)
Publicacions Matemàtiques
We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.
Diblík, Jozef (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Aleksandra Wyrwińska (1983)
Mathematica Slovaca
Ibrahim, Sobhy El-Sayed (2003)
International Journal of Mathematics and Mathematical Sciences
Ondřej Došlý (1987)
Mathematica Slovaca
Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)
Journal of the European Mathematical Society
We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When has multiple critical points, (1.1) has a wide variety of positive solutions for small and the number of positive solutions increases to as . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.
Asen L. Dontchev (1985)
Banach Center Publications
Shcheglova, A.A. (2002)
Sibirskij Matematicheskij Zhurnal
Xie, Feng, Jin, Zhaoyang, Ni, Mingkang (2010)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Gorman, Arthur D. (2002)
International Journal of Mathematics and Mathematical Sciences