Displaying 381 – 400 of 421

Showing per page

The Kneser property for the abstract Cauchy problem

Hernán R. Henríquez, Genaro Castillo G. (2003)

Annales Polonici Mathematici

We establish existence of mild solutions for the semilinear first order functional abstract Cauchy problem and we prove that the set of mild solutions of this problem is connected in the space of continuous functions.

The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations

Miroslaw Lustyk, Julian Janus, Marzenna Pytel-Kudela, Anatoliy Prykarpatsky (2009)

Open Mathematics

The projection-algebraic approach of the Calogero type for discrete approximations of linear and nonlinear differential operator equations in Banach spaces is studied. The solution convergence and realizability properties of the related approximating schemes are analyzed. For the limiting-dense approximating scheme of linear differential operator equations a new convergence theorem is stated. In the case of nonlinear differential operator equations the effective convergence conditions for the approximated...

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function Φ 0 : H whose critical points coincide with S and a control...

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S. A classical approach consists in following the trajectories of the generalized steepest descent system (cf.   Brézis [CITE]) applied to the non-smooth function  Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  Φ 0 : H whose critical points coincide with S and...

Topological properties of the solution set of a class of nonlinear evolutions inclusions

Nikolaos S. Papageorgiou (1997)

Czechoslovak Mathematical Journal

In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field F ( t , x ) , we are able to show that the solution set is in fact an R δ -set. Finally some applications to infinite dimensional control systems are also presented.

Trichotomy and bounded solutions of nonlinear differential equations

Mieczysław Cichoń (1994)

Mathematica Bohemica

The existence of bounded solutions for equations x ' = A ( t ) x + f ( t , x ) in Banach spaces is proved. We assume that the linear part is trichotomic and the perturbation f satisfies some conditions expressed in terms of measures of noncompactness.

Ulam Stabilities for Partial Impulsive Fractional Differential Equations

Saïd Abbas, Mouffak Benchohra, Juan J. Nieto (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.

Une fonction β-lipschitzienne qui n'est pas une perturbation compacted'une fonction dissipative

Roland Uhl (1995)

Annales Polonici Mathematici

Résumé. On présente une fonction continue f: c₀ → c₀ qui satisfait à une condition lipschitzienne par rapport à la mesure de non-compacité de Hausdorff (ou Kuratowski), mais telle que f n'est pas la somme d'une fonction dissipative et d'une fonction compacte. Cet exemple attache de l'importance au théorème d'existence de Sabina Schmidt (1989) pour des équations différentielles dans les espaces de Banach.

Currently displaying 381 – 400 of 421