Displaying 81 – 100 of 101

Showing per page

Optimal control of impulsive stochastic evolution inclusions

N.U. Ahmed (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions driven by vector measures. We use stochastic vector measures as controls adapted to an increasing family of complete sigma algebras and prove the existence of optimal controls.

Periodic problems and problems with discontinuities for nonlinear parabolic equations

Tiziana Cardinali, Nikolaos S. Papageorgiou (2000)

Czechoslovak Mathematical Journal

In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that...

Perturbation stochastique de processus de rafle

Frédéric Bernicot (2008/2009)

Séminaire Équations aux dérivées partielles

Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre  : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.

Representation of the set of mild solutions to the relaxed semilinear differential inclusion

Irene Benedetti, Elena Panasenko (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.

Second order difference inclusions of monotone type

G. Apreutesei, N. Apreutesei (2012)

Mathematica Bohemica

The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.

Second-Order Viability Problem: A Baire Category Approach

Myelkebir Aitalioubrahim, Said Sajid (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

The paper deals with the existence of viable solutions to the differential inclusion ẍ(t) ∈ f(t,x(t)) + ext F(t,x(t)), where f is a single-valued map and ext F(t,x) stands for the extreme points of a continuous, convex and noncompact set-valued mapping F with nonempty interior.

Second-order viability result in Banach spaces

Myelkebir Aitalioubrahim, Said Sajid (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We show the existence result of viable solutions to the second-order differential inclusion ẍ(t) ∈ F(t,x(t),ẋ(t)), x(0) = x₀, ẋ(0) = y₀, x(t) ∈ K on [0,T], where K is a closed subset of a separable Banach space E and F(·,·,·) is a closed multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the third argument.

Some quasivariational problems with memory

Ulisse Stefanelli (2004)

Bollettino dell'Unione Matematica Italiana

This note deals with a class of abstract quasivariational evolution problems that may include some memory effects. Under a suitable monotonicity framework, we provide a generalized existence result by means of a fixed point technique in ordered spaces. Finally, an application to the modeling of generalized kinematic hardening in plasticity is discussed.

The periodic problem for semilinear differential inclusions in Banach spaces

Ralf Bader (1998)

Commentationes Mathematicae Universitatis Carolinae

Sufficient conditions on the existence of periodic solutions for semilinear differential inclusions are given in general Banach space. In our approach we apply the technique of the translation operator along trajectories. Due to recent results it is possible to show that this operator is a so-called decomposable map and thus admissible for certain fixed point index theories for set-valued maps. Compactness conditions are formulated in terms of the Hausdorff measure of noncompactness.

Currently displaying 81 – 100 of 101