Displaying 21 – 40 of 165

Showing per page

Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium

Zhouchao Wei, Zhen Wang (2013)

Kybernetika

By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived...

Complementary matrices in the inclusion principle for dynamic controllers

Lubomír Bakule, José Rodellar, Josep M. Rossell (2003)

Kybernetika

A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...

Continuous-time periodic systems in H 2 and H . Part I: Theoretical aspects

Patrizio Colaneri (2000)

Kybernetika

The paper is divided in two parts. In the first part a deep investigation is made on some system theoretical aspects of periodic systems and control, including the notions of H 2 and H norms, the parametrization of stabilizing controllers, and the existence of periodic solutions to Riccati differential equations and/or inequalities. All these aspects are useful in the second part, where some parametrization and control problems in H 2 and H are introduced and solved.

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Control of Traveling Solutions in a Loop-Reactor

Y. Smagina, M. Sheintuch (2010)

Mathematical Modelling of Natural Phenomena

We consider the stabilization of a rotating temperature pulse traveling in a continuous asymptotic model of many connected chemical reactors organized in a loop with continuously switching the feed point synchronously with the motion of the pulse solution. We use the switch velocity as control parameter and design it to follow the pulse: the switch velocity is updated at every step on-line using the discrepancy between the temperature at the front...

Controllability and observability of time-invariant linear dynamic systems

Martin Bohner, Nick Wintz (2012)

Mathematica Bohemica

In the paper, we unify and extend some basic properties for linear control systems as they appear in the continuous and discrete cases. In particular, we examine controllability, reachability, and observability for time-invariant systems and establish a duality principle.

Decentralized control and synchronization of time-varying complex dynamical network

Wei-Song Zhong, Jovan D. Stefanovski, Georgi M. Dimirovski, Jun Zhao (2009)

Kybernetika

A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...

Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei, Zhen Wang (2013)

Kybernetika

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.

Deterministic minimax impulse control in finite horizon: the viscosity solution approach

Brahim El Asri (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study here the impulse control minimax problem. We allow the cost functionals and dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that the value function of the problem is continuous. Moreover, the value function is characterized as the unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an application in mathematical finance.

Differential flatness and defect: an overview

Michel Fliess, Jean Lévine, Philippe Martin, Pierre Rouchon (1995)

Banach Center Publications

We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to the fact that, in accordance with Willems' standpoint, flatness and defect are best defined without...

Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation

Zhen Wang, Wei Sun, Zhouchao Wei, Xiaojian Xi (2014)

Kybernetika

Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in R 3 , the dynamical behaviors at infinity were described completely. Moreover, a...

Currently displaying 21 – 40 of 165