Razumikhin stability theorem for fractional systems with delay.
Under suitable conditions we prove the wellposedness of small time-varied delay equations and then establish the robust stability for such systems on the phase space of continuous vector-valued functions.
The paper deals with the existence of positive ω-periodic solutions for a class of nonlinear delay differential equations. For example, such equations represent the model for the survival of red blood cells in an animal. The sufficient conditions for the exponential stability of positive ω-periodic solution are also considered.
This paper is concerned with the problem of the exponential stability in mean square moment for neutral stochastic systems with mixed delays, which are composed of the retarded one and the neutral one, respectively. Based on an integral inequality, a delay-dependent stability criterion for such systems is obtained in terms of linear matrix inequality (LMI) to ensure a large upper bounds of the neutral delay and the retarded delay by dividing the neutral delay interval into multiple segments. A new...
In this paper, a five-dimensional energy demand-supply system has been considered. On the one hand, we analyze the stability for all of the equilibrium points of the system. For each of equilibrium point, by analyzing the characteristic equation, we show the conditions for the stability or instability using Routh-Hurwitz criterion. Then numerical simulations have been given to illustrate all of cases for the theoretical results. On the other hand, by introducing the phenomenon of time delay, we...