On a class of fourth order half-linear differential equations
We study oscillatory properties of solutions of the Emden-Fowler type differential equation where , , and for . Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).
We define a non-smooth guiding function for a functional differential inclusion and apply it to the study the asymptotic behavior of its solutions.
The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator , which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation describing the motion of a mass point at the extremity of an elastico-plastic spring.
Qualitative comparison of the nonoscillatory behavior of the equations and is sought by way of finding different nonoscillation criteria for the above equations. is a disconjugate operator of the form Both canonical and noncanonical forms of have been studied.
In this paper, necessary and sufficient conditions are obtained for every bounded solution of to oscillate or tend to zero as for different ranges of . It is shown, under some stronger conditions, that every solution of oscillates or tends to zero as . Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results.
In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the -th order delay differential equations Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases and are discussed.
This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...
The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with deviating argument. In particular, we prove a comparison theorem for properties A and B as well as a comparison result on property A between nonlinear equations with and without deviating arguments. Our assumptions on nonlinearity f are related to its behavior only in a neighbourhood of zero and/or of infinity.
The objective of this paper is to study asymptotic properties of the third-order neutral differential equation . We will establish two kinds of sufficient conditions which ensure that either all nonoscillatory solutions of (E) converge to zero or all solutions of (E) are oscillatory. Some examples are considered to illustrate the main results.