Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints
In this article, given a reference feasible trajectory of an optimal control problem, we say that the quadratic growth property for bounded strong solutions holds if the cost function of the problem has a quadratic growth over the set of feasible trajectories with a bounded control and with a state variable sufficiently close to the reference state variable. Our sufficient second-order optimality conditions in Pontryagin form ensure this property and ensure a fortiori that the reference trajectory...
This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. Linear Matrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly stable. The behavior of spectra of mixed retarded-neutral...
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended...