Displaying 61 – 80 of 84

Showing per page

Permanence and global exponential stability of Nicholson-type delay systems

Zhonghuai Wu, Jianying Shao, Mingquan Yang, Wei Gao (2011)

Annales Polonici Mathematici

We present several results on permanence and global exponential stability of Nicholson-type delay systems, which correct and generalize some recent results of Berezansky, Idels and Troib [Nonlinear Anal. Real World Appl. 12 (2011), 436-445].

Persistence and extinction of a stochastic delay predator-prey model under regime switching

Zhen Hai Liu, Qun Liu (2014)

Applications of Mathematics

The paper is concerned with a stochastic delay predator-prey model under regime switching. Sufficient conditions for extinction and non-persistence in the mean of the system are established. The threshold between persistence and extinction is also obtained for each population. Some numerical simulations are introduced to support our main results.

Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays

Changjin Xu, Maoxin Liao, Xiaofei He (2011)

International Journal of Applied Mathematics and Computer Science

In this paper, a two-species Lotka-Volterra predator-prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations...

Stability switches for some class of delayed population models

Joanna Skonieczna, Urszula Foryś (2011)

Applicationes Mathematicae

We study stability switches for some class of delay differential equations with one discrete delay. We describe and use a simple method of checking the change of stability which originally comes from the paper of Cook and Driessche (1986). We explain this method on the examples of three types of prey-predator models with delay and compare the dynamics of these models under increasing delay.

The effect of time delay and Hopf bifurcation in a tumor-immune system competition model with negative immune response

Radouane Yafia (2009)

Applicationes Mathematicae

We consider a system of delay differential equations modelling the tumor-immune system competition with negative immune response and three positive stationary points. The dynamics of the first two positive solutions are studied in terms of the local stability. We are particularly interested in the study of the Hopf bifurcation problem to predict the occurrence and stability of a limit cycle bifurcating from the second positive stationary point, when the delay (taken as a parameter) crosses some...

Currently displaying 61 – 80 of 84