Page 1

Displaying 1 – 5 of 5

Showing per page

Mathematical Modelling of Cancer Stem Cells Population Behavior

E. Beretta, V. Capasso, N. Morozova (2012)

Mathematical Modelling of Natural Phenomena

Recent discovery of cancer stem cells in tumorigenic tissues has raised many questions about their nature, origin, function and their behavior in cell culture. Most of current experiments reporting a dynamics of cancer stem cell populations in culture show the eventual stability of the percentages of these cell populations in the whole population of cancer cells, independently of the starting conditions. In this paper we propose a mathematical model...

Model of AIDS-related tumour with time delay

Marek Bodnar, Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present and compare two simple models of immune system and cancer cell interactions. The first model reflects simple cancer disease progression and serves as our "control" case. The second describes the progression of a cancer disease in the case of a patient infected with the HIV-1 virus.

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...

Currently displaying 1 – 5 of 5

Page 1