Displaying 281 – 300 of 1832

Showing per page

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work...

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations

Wantong Li (1997)

Annales Polonici Mathematici

A class of neutral nonlinear differential equations is studied. Various classifications of their eventually positive solutions are given. Necessary and/or sufficient conditions are then derived for the existence of these eventually positive solutions. The derivations are based on two fixed point theorems as well as the method of successive approximations.

Commutants of the Dunkl Operators in C(R)

Dimovski, Ivan, Hristov, Valentin, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.

Currently displaying 281 – 300 of 1832