Convergence and periodicity in a delayed network of neurons with threshold nonlinearity.
A general class of numerical methods for solving initial value problems for neutral functional-differential-algebraic systems is considered. Necessary and sufficient conditions under which these methods are consistent with the problem are established. The order of consistency is discussed. A convergence theorem for a general class of methods is proved.
Consider the delay differential equation where is a constant and is Lipschitzian. It is shown that if is small, then the solutions of (1) have the same convergence properties as the solutions of the ordinary differential equation obtained from (1) by ignoring the delay.
In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.
The problem of the decentralized robust tracking and model following is considered for a class of uncertain large scale systems including time-varying delays in the interconnections. On the basis of the Razumikhin-type theorem and the Lyapunov stability theory, a class of decentralized memoryless local state feedback controllers is proposed for robust tracking of dynamical signals. It is shown that by employing the proposed decentralized robust tracking controllers, one can guarantee that the tracking...