Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments

Özkan Öcalan (2009)

Archivum Mathematicum

This paper is concerned with the nonlinear advanced difference equation with constant coefficients x n + 1 - x n + i = 1 m p i f i ( x n - k i ) = 0 , n = 0 , 1 , where p i ( - , 0 ) and k i { , - 2 , - 1 } for i = 1 , 2 , , m . We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients x n + 1 - x n + i = 1 m p i n f i ( x n - k i ) = 0 , n = 0 , 1 , where p i n 0 and k i { , - 2 , - 1 } for i = 1 , 2 , , m .

Local center manifold for parabolic equations with infinite delay

Hana Petzeltová (1994)

Mathematica Bohemica

The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.

Local properties of the solution set of the operator equation in Banach spaces in a neighbourhood of a bifurcation point

Joanna Janczewska (2004)

Open Mathematics

In this work we study the problem of the existence of bifurcation in the solution set of the equation F(x, λ)=0, where F: X×R k →Y is a C 2-smooth operator, X and Y are Banach spaces such that X⊂Y. Moreover, there is given a scalar product 〈·,·〉: Y×Y→R 1 that is continuous with respect to the norms in X and Y. We show that under some conditions there is bifurcation at a point (0, λ0)∈X×R k and we describe the solution set of the studied equation in a small neighbourhood of this point.

Logistic equations in tumour growth modelling

Urszula Foryś, Anna Marciniak-Czochra (2003)

International Journal of Applied Mathematics and Computer Science

The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are studied in...

Currently displaying 21 – 31 of 31

Previous Page 2