Linearized oscillation of even order nonlinear neutral delay differential equations.
This paper is concerned with the nonlinear advanced difference equation with constant coefficients where and for . We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients where and for .
The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.
In this work we study the problem of the existence of bifurcation in the solution set of the equation F(x, λ)=0, where F: X×R k →Y is a C 2-smooth operator, X and Y are Banach spaces such that X⊂Y. Moreover, there is given a scalar product 〈·,·〉: Y×Y→R 1 that is continuous with respect to the norms in X and Y. We show that under some conditions there is bifurcation at a point (0, λ0)∈X×R k and we describe the solution set of the studied equation in a small neighbourhood of this point.
The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are studied in...