On a functional-differential equation related to Golomb's self-described sequence
The functional-differential equation is closely related to Golomb’s self-described sequence ,We describe the increasing solutions of this equation. We show that such a solution must have a nonnegative fixed point, and that for every number there is exactly one increasing solution with as a fixed point. We also show that in general an initial condition doesn’t determine a unique solution: indeed the graphs of two distinct increasing solutions cross each other infinitely many times. In fact...