Existence and Lyapunov stability of periodic solutions for generalized higher-order neutral differential equations.
We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
Our paper deals with the following nonlinear neutral differential equation with variable delay By using Krasnoselskii’s fixed point theorem we obtain the existence of periodic solution and by contraction mapping principle we obtain the uniqueness. A sufficient condition is established for the positivity of the above equation. Stability results of this equation are analyzed. Our results extend and complement some results obtained in the work [Yuan, Y., Guo, Z.: On the existence and stability of...
We use the coincidence degree to establish new results on the existence and uniqueness of T-periodic solutions for a kind of Duffing equation with two deviating arguments of the form x'' + Cx'(t) + g₁(t,x(t-τ₁(t))) + g₂(t,x(t-τ₂(t))) = p(t).
By applying the continuation theorem of coincidence degree theory, we establish new results on the existence and uniqueness of 2π-periodic solutions for a class of nonlinear nth order differential equations with delays.
This paper is concerned with a class of Nicholson's blowflies models with multiple time-varying delays. By applying the coincidence degree, some criteria are established for the existence and uniqueness of positive periodic solutions of the model. Moreover, a totally new approach to proving the uniqueness of positive periodic solutions is proposed. In particular, an example is employed to illustrate the main results.