Langenhop's inequality and applications for dynamic equations.
We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into -irreducible subspaces.
A Liapunov-type inequality for a class of third order delay-differential equations is derived.
We present a variation-of-constants formula for functional differential equations of the form where is a bounded linear operator and is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application is Kurzweil integrable with in an interval of , for each regulated function . This means that may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain...
A class of nonlinear neutral differential equations with variable coefficients and delays is considered. Conditions for the existence of eventually positive solutions are obtained which extend some of the criteria existing in the literature. In particular, a linearized comparison theorem is obtained which establishes a connection between our nonlinear equations and a class of linear neutral equations with constant coefficients.
This paper is concerned with the nonlinear advanced difference equation with constant coefficients where and for . We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients where and for .