Monotone iterative technique for first-order nonlinear periodic boundary value problems on time scales.
Second order nonlinear delay differential equations are considered, and Krasnosel'skiĭ's fixed point theorem is used to establish a result on the existence of positive solutions of a boundary value problem on the half-line. This result can be used to guarantee the existence of multiple positive solutions. A specification of the result obtained to the case of second order nonlinear ordinary differential equations as well as to a particular case of second order nonlinear delay differential equations...
We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.
Our aim is to study the following new type of multivalued backward stochastic differential equation: where ∂φ is the subdifferential of a convex function and (Y t, Z t):= (Y(t + θ), Z(t + θ))θ∈[−T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.