Displaying 81 – 100 of 164

Showing per page

Stability and sliding modes for a class of nonlinear time delay systems

Vladimir B. Răsvan (2011)

Mathematica Bohemica

The following time delay system x ˙ = A x ( t ) + 1 r b q i * x ( t - τ i ) - b ϕ ( c * x ( t ) ) is considered, where ϕ : may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.

Stability and stabilizability of a class of uncertain dynamical systems with delays

Mohammed Saadni, Driss Mehdi (2005)

International Journal of Applied Mathematics and Computer Science

This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. Linear Matrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.

Stability and stabilizability of mixed retarded-neutral type systems

Rabah Rabah, Grigory Mikhailovitch Sklyar, Pavel Yurevitch Barkhayev (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly stable. The behavior of spectra of mixed retarded-neutral...

Stability and stabilizability of mixed retarded-neutral type systems∗

Rabah Rabah, Grigory Mikhailovitch Sklyar, Pavel Yurevitch Barkhayev (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...

Stability and stabilizability of mixed retarded-neutral type systems∗

Rabah Rabah, Grigory Mikhailovitch Sklyar, Pavel Yurevitch Barkhayev (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...

Stability criteria of linear neutral systems with distributed delays

Guang-Da Hu (2011)

Kybernetika

In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded...

Stability of retarded systems with slowly varying coefficient

Michael Iosif Gil (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The “freezing” method for ordinary differential equations is extended to multivariable retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle and norm estimates for the fundamental solutions of the considered equations.

Stability of retarded systems with slowly varying coefficient

Michael Iosif Gil (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The “freezing” method for ordinary differential equations is extended to multivariable retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle and norm estimates for the fundamental solutions of the considered equations.

Currently displaying 81 – 100 of 164