Displaying 101 – 120 of 164

Showing per page

Stability of unique pseudo almost periodic solutions with measure

Boulbaba Ghanmi, Mohsen Miraoui (2020)

Applications of Mathematics

By means of the fixed-point methods and the properties of the μ -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the μ -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where μ is a positive measure. A numerical example is given to illustrate our main results.

Stability switches for some class of delayed population models

Joanna Skonieczna, Urszula Foryś (2011)

Applicationes Mathematicae

We study stability switches for some class of delay differential equations with one discrete delay. We describe and use a simple method of checking the change of stability which originally comes from the paper of Cook and Driessche (1986). We explain this method on the examples of three types of prey-predator models with delay and compare the dynamics of these models under increasing delay.

Stabilization of fractional exponential systems including delays

Catherine Bonnet, Jonathan R. Partington (2001)

Kybernetika

This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular...

Stabilization of solutions to a differential-delay equation in a Banach space

J. J. Koliha, Ivan Straškraba (1997)

Annales Polonici Mathematici

A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.

Stabilization of Timoshenko beam by means of pointwise controls

Gen-Qi Xu, Siu Pang Yung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...

Stabilization of Timoshenko Beam by Means of Pointwise Controls

Gen-Qi Xu, Siu Pang Yung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The periodic solutions...

Stable solutions to homogeneous difference-differential equations with constant coefficients: Analytical instruments and an application to monetary theory

Ulf von Kalckreuth, Manfred Krtscha (2004)

Applications of Mathematics

In economic systems, reactions to external shocks often come with a delay. On the other hand, agents try to anticipate future developments. Both can lead to difference-differential equations with an advancing argument. These are more difficult to handle than either difference or differential equations, but they have the merit of added realism and increased credibility. This paper generalizes a model from monetary economics by von Kalckreuth and Schröder. Working out its stability properties, we...

State elimination for nonlinear neutral state-space systems

Miroslav Halás, Pavol Bisták (2014)

Kybernetika

The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended...

Currently displaying 101 – 120 of 164