Displaying 981 – 1000 of 1832

Showing per page

On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay

S. Ruan (2009)

Mathematical Modelling of Natural Phenomena

In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey models, generalized Gause-type predator-prey models with harvesting, etc. Bogdanov-Takens bifurcations...

On nonoscillation of canonical or noncanonical disconjugate functional equations

Bhagat Singh (2000)

Czechoslovak Mathematical Journal

Qualitative comparison of the nonoscillatory behavior of the equations L n y ( t ) + H ( t , y ( t ) ) = 0 and L n y ( t ) + H ( t , y ( g ( t ) ) ) = 0 is sought by way of finding different nonoscillation criteria for the above equations. L n is a disconjugate operator of the form L n = 1 p n ( t ) d d t 1 p n - 1 ( t ) d d t ... d d t · p 0 ( t ) . Both canonical and noncanonical forms of L n have been studied.

On non-oscillation on semi-axis of solutions of second order deviating differential equations

Sergey Labovskiy, Manuel Alves (2018)

Mathematica Bohemica

We obtain conditions for existence and (almost) non-oscillation of solutions of a second order linear homogeneous functional differential equations u ' ' ( x ) + i p i ( x ) u ' ( h i ( x ) ) + i q i ( x ) u ( g i ( x ) ) = 0 without the delay conditions h i ( x ) , g i ( x ) x , i = 1 , 2 , ... , and u ' ' ( x ) + 0 u ' ( s ) d s r 1 ( x , s ) + 0 u ( s ) d s r 0 ( x , s ) = 0 .

On oscillation criteria for third order nonlinear delay differential equations

Ravi P. Agarwal, Mustafa F. Aktas, Aydın Tiryaki (2009)

Archivum Mathematicum

In this paper we are concerned with the oscillation of third order nonlinear delay differential equations of the form r 2 t r 1 t x ' ' ' + p t x ' + q t f x g t = 0 . We establish some new sufficient conditions which insure that every solution of this equation either oscillates or converges to zero.

Currently displaying 981 – 1000 of 1832