Displaying 61 – 80 of 103

Showing per page

Property C for ODE and Applications to an Inverse Problem for a Heat Equation

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Let j : = - d ² / d x ² + k ² q j ( x ) , k = const > 0, j = 1,2, 0 < e s s i n f q j ( x ) e s s s u p q j ( x ) < . Suppose that (*) 0 1 p ( x ) u ( x , k ) u ( x , k ) d x = 0 for all k > 0, where p is an arbitrary fixed bounded piecewise-analytic function on [0,1], which changes sign finitely many times, and u j solves the problem j u j = 0 , 0 ≤ x ≤ 1, u j ' ( 0 , k ) = 0 , u j ( 0 , k ) = 1 . It is proved that (*) implies p = 0. This result is applied to an inverse problem for a heat equation.

Quantum-graph vertex couplings: some old and new approximations

Stepan Manko (2014)

Mathematica Bohemica

In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.

Renormalization of exponential sums and matrix cocycles

Alexander Fedotov, Frédéric Klopp (2004/2005)

Séminaire Équations aux dérivées partielles

In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics

Résurgence de Voros et périodes des courbes hyperelliptiques

H. Dillinger, E. Delabaere, Frédéric Pham (1993)

Annales de l'institut Fourier

Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros [ dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983) ] : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme p d q ( q =variable de position,...

Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method

Yu Ping Wang, Shahrbanoo Akbarpoor Kiasary, Emrah Yılmaz (2024)

Applications of Mathematics

We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.

Currently displaying 61 – 80 of 103