Displaying 221 – 240 of 497

Showing per page

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

On a Five-Diagonal Jacobi Matrices and Orthogonal Polynomials on Rays in the Complex Plane

Zagorodniuk, S. (1998)

Serdica Mathematical Journal

∗ Partially supported by Grant MM-428/94 of MESC.Systems of orthogonal polynomials on the real line play an important role in the theory of special functions [1]. They find applications in numerous problems of mathematical physics and classical analysis. It is known, that classical polynomials have a number of properties, which uniquely define them.

On discreteness of spectrum of a functional differential operator

Sergey Labovskiy, Mário Frengue Getimane (2014)

Mathematica Bohemica

We study conditions of discreteness of spectrum of the functional-differential operator u = - u ' ' + p ( x ) u ( x ) + - ( u ( x ) - u ( s ) ) d s r ( x , s ) on ( - , ) . In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum.

Currently displaying 221 – 240 of 497