Displaying 41 – 60 of 62

Showing per page

Polynomial bounds for the oscillation of solutions of Fuchsian systems

Gal Binyamini, Sergei Yakovenko (2009)

Annales de l’institut Fourier

We study the problem of placing effective upper bounds for the number of zeroes of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension n having m singular points. As a function of n , m , this bound turns out to be double exponential in the precise sense explained in the paper.As a corollary, we obtain a solution of the so-called restricted infinitesimal...

Remarks on the uniqueness of second order ODEs

Dalibor Pražák (2011)

Applications of Mathematics

We are concerned with the uniqueness problem for solutions to the second order ODE of the form x ' ' + f ( x , t ) = 0 , subject to appropriate initial conditions, under the sole assumption that f is non-decreasing with respect to x , for each t fixed. We show that there is non-uniqueness in general; on the other hand, several types of reasonable additional assumptions make the problem uniquely solvable. The interest in this problem comes, among other, from the study of oscillations of lumped parameter systems with implicit...

Solutions of non-homogeneous linear differential equations in the unit disc

Ting-Bin Cao, Zhong-Shu Deng (2010)

Annales Polonici Mathematici

The main purpose of this paper is to consider the analytic solutions of the non-homogeneous linear differential equation f ( k ) + a k - 1 ( z ) f ( k - 1 ) + + a ( z ) f ' + a ( z ) f = F ( z ) , where all coefficients a , a , . . . , a k - 1 , F ≢ 0 are analytic functions in the unit disc = z∈ℂ: |z|<1. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.

Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations

Zinelâabidine LATREUCH, Benharrat BELAÏDI (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is devoted to considering the complex oscillation of differential polynomials generated by meromorphic solutions of the differential equation f ( k ) + A k - 1 ( z ) f ( k - 1 ) + + A 1 ( z ) f ' + A 0 ( z ) f = 0 , where A i ( z ) ( i = 0 , 1 ...

The fixed points and iterated order of some differential polynomials

Benharrat Belaidi (2009)

Commentationes Mathematicae Universitatis Carolinae

This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation f ' ' + A 1 ( z ) f ' + A 0 ( z ) f = F , where A 1 ( z ) , A 0 ( z ) ( ¬ 0 ) ...

Currently displaying 41 – 60 of 62