Page 1

Displaying 1 – 1 of 1

Showing per page

Perturbation singulière en dimension trois : canards en un point pseudo-singulier nœud

Éric Benoît (2001)

Bulletin de la Société Mathématique de France

On étudie les systèmes différentiels singulièrement perturbés de dimension 3 du type { x ˙ = f ( x , y , z , ε ) , y ˙ = g ( x , y , z , ε ) , ε z ˙ = h ( x , y , z , ε ) , f , g , h sont analytiques quelconques. Les travaux antérieurs étudiaient les points réguliers où la surface lente h = 0 est transverse au champ rapide vertical. C’est le domaine d’application du théorème de Tikhonov. Dans d’autres travaux antérieurs, on étudiait les singularités de certains types : plis et fronces de la surface lente, ainsi que certaines singularités plus compliquées, analogues aux points tournants...

Currently displaying 1 – 1 of 1

Page 1