On a “Liapunov like” function for an equation with a complex-valued function
We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on without algebraic solutions to the case of foliations by curves on . We give an example of a foliation on with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
We introduce and study the sheaf of Deligne to describe singular points of a linear differential operator and we develop a technique based on homological algebra to prove index theorems for .As particular cases, we obtain index theorems for acting in spaces of multisummable series and a new proof of the index theorem of Malgrange in the space of convergent power series and of the index theorems of Ramis in the spaces of Gevrey series.We compute the values of these indices in terms of the formal...
The zeros of the solution of the differential equation are investigated when , and has some monotonicity properties as . The notion is introduced also for real, too. We are particularly interested in solutions which are “close" to the functions , when is large. We derive a formula for and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair , . We show the concavity of for and also...