Page 1 Next

Displaying 1 – 20 of 53

Showing per page

A brief introduction to homogenization and miscellaneous applications*

Grégoire Allaire (2012)

ESAIM: Proceedings

This paper is a set of lecture notes for a short introductory course on homogenization. It covers the basic tools of periodic homogenization (two-scale asymptotic expansions, the oscillating test function method and two-scale convergence) and briefly describes the main results of the more general theory of G−  or H−convergence. Several applications of the method are given: derivation of Darcy’s law for flows in porous media, derivation of the porosity...

A calculus for a class of finitely degenerate pseudodifferential operators

Ingo Witt (2003)

Banach Center Publications

For a class of degenerate pseudodifferential operators, local parametrices are constructed. This is done in the framework of a pseudodifferential calculus upon adding conditions of trace and potential type, respectively, along the boundary on which the operators degenerate.

Abstract methods in differential equations.

Herbert Amann (2003)

RACSAM

This is an expanded version, enriched by references, of my inaugural speech held on November 7, 2001 at the Real Academia de Ciencas Exactas, Físicas y Naturales in Madrid. It explains in a nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems.

Couches limites semilinéaires

Franck Sueur (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

On s’intéresse à des problèmes mixtes pour des systèmes symétriques hyperboliques multidimensionnels semilinéaires perturbés par une petite viscosité. La description à la limite non visqueuse recquiert des développements du type BKW mettant en évidence une couche limite caractéristique (CLC) et une couche limite non caractéristique (CLNC). Ce thème traité dans [12] est ici enrichi de trois améliorations :l’étude inclut des développements ayant peu de termes (comme un seul terme),on étudie aussi...

Diffusion and cross-diffusion in pattern formation

Wei-Ming Ni (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as 2 × 2 systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.

Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists

P. E. Vincent, A. Jameson (2011)

Mathematical Modelling of Natural Phenomena

Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order...

Fractional Fokker-Planck-Kolmogorov type Equations and their Associated Stochastic Differential Equations

Hahn, Marjorie, Umarov, Sabir (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf GorenfloThere is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving process, corresponding...

Global well-posedness for the primitive equations with less regular initial data

Frédéric Charve (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

This paper is devoted to the study of the lifespan of the solutions of the primitive equations for less regular initial data. We interpolate the globall well-posedness results for small initial data in H ˙ 1 2 given by the Fujita-Kato theorem, and the result from [6] which gives global well-posedness if the Rossby parameter ε is small enough, and for regular initial data (oscillating part in H ˙ 1 2 H ˙ 1 and quasigeostrophic part in H 1 ).

Currently displaying 1 – 20 of 53

Page 1 Next