Nonlinear diffusion processes.
This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula...
This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula...
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all . Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper...
In this paper, we study a nonlinear elliptic equation with critical exponent, invariant under the action of a subgroup G of the isometry group of a compact Riemannian manifold. We obtain some existence results of positive solutions of this equation, and under some assumptions on G, we show that we can solve this equation for supercritical exponents.
The paper is devoted to the solvability of a nonlinear elliptic problem in a plane multiply connected domain. On the inner components of its boundary Dirichlet conditions are known up to additive constants which have to be determined together with the sought solution so that the so-called trailing stagnation conditions are satisfied. The results have applications in the stream function solution of subsonic flows past groups of profiles or cascades of profiles.