Simultaneous versus nonsimultaneous blowup for a system of heat equations coupled boundary flux.
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations , in ; fully coupled by the boundary conditions , on , where is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation . We prove that if blows up in finite time then can fail to blow up if and only if and , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover,...
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω x (0,T); fully coupled by the boundary conditions , on ∂Ω x (0,T), where Ω is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1) , which is the same condition as...
In this paper we study a controllability problem for a simplified one dimensional model for the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end. One of the novelties brought in with respect to the existing literature consists in the fact that we use a single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear parabolic systems, independently of the techniques previously used for the linearized problem....
We consider positive solutions of the system ; in a ball or in the whole space, with . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for the final...
We consider a reaction-diffusion-convection equation on the halfline (0,1) with the zero Dirichlet boundary condition at . We find a positive selfsimilar solution which blows up in a finite time at while remains bounded for .
Using a method developed by the author for an analysis of singular integral inequalities a stability theorem for semilinear parabolic PDEs is proved.
Let χ be a space of homogeneous type. The aims of this paper are as follows.i) Assuming that T is a bounded linear operator on L2(χ), we give a sufficient condition on the kernel of T such that T is of weak type (1,1), hence bounded on Lp(χ) for 1 < p ≤ 2; our condition is weaker then the usual Hörmander integral condition.ii) Assuming that T is a bounded linear operator on L2(Ω) where Ω is a measurable subset of χ, we give a sufficient condition on the kernel of T so that T is of weak type...
A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to 0 in one of...