Exact solutions of the generalized Benjamin-Bona-Mahony equation.
A new and elegant procedure is proposed for the solution of mixed potential problems in a half-space with a circular line of division of boundary conditions. The approach is based on a new type of integral operators with special properties. Two general external problems are solved; i) An arbitrary potential is specified at the boundary outside a circle, and its normal derivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and be potential is zero inside. Several...
We give an example of a bounded discontinuous divergence-free solution of a linear elliptic system with measurable bounded coefficients in and a corresponding example for a Stokes-like system.
In [23] M. Pierre introduced parabolic Dirichlet spaces. Such spaces are obtained by considering certain families of Dirichlet forms. He developed a rather far-reaching and general potential theory for these spaces. In particular, he introduced associated capacities and investigated the notion of related quasi-continuous functions. However, the only examples given by M. Pierre in [23] (see also [22]) are Dirichlet forms arising from strongly parabolic differential operators of second order. To...
Le but de l’exposé est de donner un guide de lecture pour un article de Gilles Lebeau où il est montré que le problème de Cauchy pour l’équation d’onde surcritique est mal posé au sens de Hadamard dans l’espace d’énergie, pour en dimension 3. La preuve repose sur des constructions d’optique géométrique et des analyses d’instabilité dans des régimes fortement non linéaires. On donnera les étapes de l’analyse en essayant de les situer dans leur contexte plus général : construction de solutions...
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space