Displaying 801 – 820 of 872

Showing per page

Counterexamples to the Strichartz inequalities for the wave equation in general domains with boundary

Oana Ivanovici (2012)

Journal of the European Mathematical Society

In this paper we consider a smooth and bounded domain Ω d of dimension d 2 with boundary and we construct sequences of solutions to the wave equation with Dirichlet boundary condition which contradict the Strichartz estimates of the free space, providing losses of derivatives at least for a subset of the usual range of indices. This is due to microlocal phenomena such as caustics generated in arbitrarily small time near the boundary. Moreover, the result holds for microlocally strictly convex domains...

Counting number of cells and cell segmentation using advection-diffusion equations

Peter Frolkovič, Karol Mikula, Nadine Peyriéras, Alex Sarti (2007)

Kybernetika

We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...

Coupled string-beam equations as a model of suspension bridges

Pavel Drábek, Herbert Leinfelder, Gabriela Tajčová (1999)

Applications of Mathematics

We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.

Coupling of transport and diffusion models in linear transport theory

Guillaume Bal, Yvon Maday (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the coupling of two models for the propagation of particles in scattering media. The first model is a linear transport equation of Boltzmann type posed in the phase space (position and velocity). It accurately describes the physics but is very expensive to solve. The second model is a diffusion equation posed in the physical space. It is only valid in areas of high scattering, weak absorption, and smooth physical coefficients, but its numerical solution is much cheaper...

Coupling of transport and diffusion models in linear transport theory

Guillaume Bal, Yvon Maday (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the coupling of two models for the propagation of particles in scattering media. The first model is a linear transport equation of Boltzmann type posed in the phase space (position and velocity). It accurately describes the physics but is very expensive to solve. The second model is a diffusion equation posed in the physical space. It is only valid in areas of high scattering, weak absorption, and smooth physical coefficients, but its numerical solution is...

Coupling the Stokes and Navier–Stokes equations with two scalar nonlinear parabolic equations

Macarena Gómez Mármol, Francisco Ortegón Gallego (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a system of nonlinear parabolic equations arising in turbulence modelling. The unknowns are the N components of the velocity field u coupled with two scalar quantities θ and φ. The system presents nonlinear turbulent viscosity A ( θ , ϕ ) and nonlinear source terms of the form θ 2 | u | 2 and θ ϕ | u | 2 lying in L1. Some existence results are shown in this paper, including L -estimates and positivity for both θ and φ.

Covariant differential operators and Green's functions

Miroslav Engliš, Jaak Peetre (1997)

Annales Polonici Mathematici

The basic idea of this paper is to use the covariance of a partial differential operator under a suitable group action to determine suitable associated Green’s functions. For instance, we offer a new proof of a formula for Green’s function of the mth power Δ m of the ordinary Laplace’s operator Δ in the unit disk found in a recent paper (Hayman-Korenblum, J. Anal. Math. 60 (1993), 113-133). We also study Green’s functions associated with mth powers of the Poincaré invariant Laplace operator . It turns...

Crack detection using electrostatic measurements

Martin Brühl, Martin Hanke, Michael Pidcock (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we extend recent work on the detection of inclusions using electrostatic measurements to the problem of crack detection in a two-dimensional object. As in the inclusion case our method is based on a factorization of the difference between two Neumann-Dirichlet operators. The factorization possible in the case of cracks is much simpler than that for inclusions and the analysis is greatly simplified. However, the directional information carried by the crack makes the practical implementation...

Currently displaying 801 – 820 of 872