Existence of a minimal solution and a maximal solution of a nonlinear elliptic boundary value problem of the fourth order
In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.
We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ in Ω, ⎨ ⎩ u = 0 on ∂Ω, where (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.
We study a general class of nonlinear elliptic problems associated with the differential inclusion in Ω where . The vector field a(·,·) is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in function spaces we prove existence of renormalized solutions for general -data.
A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox et al. [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of , is equivalent to finding the critical points...
This paper deals with existence of finite-time blow-up solutions to a degenerate parabolic–elliptic Keller–Segel system with logistic source. Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus system with logistic source. However, blow-up solutions of the aforementioned system have not been obtained. The purpose of this paper is to construct blow-up solutions of a degenerate Keller–Segel system with logistic source.