Generalized periodic solutions of nonlinear telegraph equations (Preliminary communication)
Generalized reflected backward stochastic differential equations have been considered so far only in the case of a deterministic interval. In this paper the existence and uniqueness of solution for generalized reflected backward stochastic differential equations in a convex domain with random terminal time is studied. Applications to the obstacle problem with Neumann boundary conditions for partial differential equations of elliptic type are given.
Generalized solutions to quasilinear hyperbolic systems in the second canonical form are investigated. A theorem on existence, uniqueness and continuous dependence upon the boundary data is given. The proof is based on the methods due to L. Cesari and P. Bassanini for systems which are not functional.
Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.
Mathematics Subject Classification: 42B35, 35L35, 35K35In this paper we study generalized Strichartz inequalities for the wave equation on the Laguerre hypergroup using generalized homogeneous Besov-Laguerre type spaces.