Generalized Function Algebras and PDEs with Singularities. A Survey.
The systems of differential equations whose solutions exactly coincide with Bethe ansatz solutions for generalized Gaudin models are constructed. These equations are called the generalized spectral Riccati equations, because the simplest equation of this class has a standard Riccatian form. The general form of these equations is , i=1,..., r, where denote some homogeneous polynomials of degrees constructed from functional variables and their derivatives. It is assumed that . The problem...
Significant information about the topology of a bounded domain of a Riemannian manifold is encoded into the properties of the distance, , from the boundary of . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of , as well as applications to homotopy equivalence.
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...
We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...
We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.
Precedenti risultati riguardanti il principio di massimo generalizzato e la valutazione del primo autovalore per operatori uniformemente ellittici di tipo variazionale vengono estesi agli operatori subellittici di tipo Heisenberg non simmetrici e a coefficienti discontinui.
Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...
Let , , be a bounded connected domain of the class for some . Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem where is a Young function such that the space is embedded into exponential or multiple exponential Orlicz space, the nonlinearity has the corresponding critical growth, is a continuous potential,...
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...