Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces.
In this paper, a estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on , or on a regular bounded open set of . The proof is based partially on the Strauss inequality [Strauss,Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions...
In this paper, a estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on , or on a regular bounded open set of . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math.23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc.9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions...
Let p,q,n be natural numbers such that p+q = n. Let be either ℂ, the complex numbers field, or ℍ, the quaternionic division algebra. We consider the Heisenberg group N(p,q,) defined ⁿ × ℑ , with group law given by (v,ζ)(v’,ζ’) = (v + v’, ζ + ζ’- 1/2 ℑ B(v,v’)), where . Let U(p,q,) be the group of n × n matrices with coefficients in that leave the form B invariant. We compute explicit fundamental solutions of some second order differential operators on N(p,q,) which are canonically associated to...