Fundamental operator-functions of degenerate differential and difference-differential operators in Banach spaces which have a Noether operator in the principal part.
We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
We establish the uniqueness of fundamental solutions to the p-Laplacian equationut = div (|Du|p-2 Du), p > 2,defined for x ∈ RN, 0 < t < T. We derive from this result the asymptotic behavoir of nonnegative solutions with finite mass, i.e., such that u(*,t) ∈ L1(RN). Our methods also apply to the porous medium equationut = ∆(um), m > 1,giving new and simpler proofs of known results. We finally introduce yet another method of proving asymptotic results based on the...
We study the existence and non-existence of fundamental solutions for the scalar conservation laws ut + f(u)x = 0, related to convexity assumptions on f. We also study the limits of those solutions as the initial mass goes to infinity. We especially prove the existence of so-called Friendly Giants and Infinite Shock Solutions according to the convexity of f, which generalize the explicit power case f(u) = um. We introduce an extended notion of solution and entropy criterion to allow infinite shocks...